Amperímetro
Amperímetro.
Un amperímetro es un instrumento que se utiliza para medir la intensidad de corriente que está circulando por un circuito eléctrico. Un microamperímetro está calibrado en millonésimas de amperio y un miliamperímetro en milésimas de amperio. En términos generales, el amperímetro es un simple galvanómetro (instrumento para detectar pequeñas cantidades de corriente), con una resistencia en paralelo, llamada "resistencia shunt". Disponiendo de una gama de resistencias shunt, se puede disponer de un amperímetro con varios rangos o intervalos de medición. Los amperímetros tienen una resistencia interna muy pequeña, por debajo de 1 ohmio, con la finalidad de que su presencia no disminuya la corriente a medir cuando se conecta a un circuito eléctrico. El aparato descrito corresponde al diseño original, ya que en la actualidad los amperímetros utilizan un conversor analógico/digital para la medida de la caída de tensión en un resistor por el que circula la corriente a medir. La lectura del conversor es leída por un microprocesador que realiza los cálculos para presentar en un display numérico el valor de la corriente eléctrica circulante. Índice [ocultar]
1Clases de amperímetros o 1.1Amperímetros magnetoeléctricos o 1.2Amperímetros electromagnéticos o 1.3Amperímetros electrodinámicos o 1.4Amperímetros digitales 2Utilización 3Notas y referencias 4Véase también
Clases de amperímetros[editar]
Los sistemas de medida más importantes son los siguientes: magnetoeléctrico, electromagnético, electrodinámico y digital, cada una de ellas con su respectivo tipo de amperímetro.
Amperímetros magnetoeléctricos[editar] Para medir la corriente que circula por un circuito se tiene que conectar el amperímetro en serie con la fuente de alimentación y con el receptor de corriente. Así, toda la corriente que circula entre esos dos puntos va a pasar antes por el amperímetro. Estos aparatos tienen una bobina móvil que está fabricada con un hilo muy fino (aproximadamente 0,05 mm de diámetro) y cuyas espiras, por donde va a pasar la corriente que se quiere medir, tienen un tamaño muy reducido. Por todo esto, se puede decir que la intensidad de corriente, que va a poder medir un amperímetro cuyo sistema de medida sea magnetoeléctrico, va a estar limitada por las características físicas de los elementos que componen dicho aparato. El valor límite de lo que se puede medir sin temor a introducir errores va a ser alrededor de los 100 miliamperios, luego la escala de medida que se va a usar no puede ser de amperios sino que debe tratarse de miliamperios. Para aumentar la escala de valores que se puede medir, se puede colocar resistencias en derivación, pudiendo llegar a medir amperios (aproximadamente hasta 300 amperios). Las resistencias en derivación pueden venir conectadas directamente en el interior del aparato o se pueden conectar externamente.
Amperímetros electromagnéticos[editar] Están constituidos por una bobina que tiene pocas espiras pero de gran sección. La potencia que requieren estos aparatos para producir una desviación máxima es de unos 2 vatios. Para que pueda absorberse esta potencia es necesario que sobre los extremos de la bobina haya una caída de tensión suficiente, cuyo valor va a depender del alcance que tenga el amperímetro. El rango de valores que abarca este tipo de amperímetros va desde los 0,5 A a los 300 A. Aquí no se pueden usar resistencias en derivación ya que producirían un calentamiento que conllevaría errores en la medida. Se puede medir con ellos tanto la corriente continua como la alterna. Siendo solo válidas las medidas de corriente alterna para frecuencias inferiores a 500 Hz. También se pueden agregar amperímetros de otras medidas eficientes.
Amperímetros electrodinámicos[editar] Los amperímetros con sistema de medida "electrodinámico" están constituidos por dos bobinas, una fija y una móvil.
Amperímetros digitales[editar] Estos amperímetros utilizan una resistencia de derivación y un convertidor analógico-digital (ADC)1
Utilización[editar] Para efectuar la medida es necesario que la intensidad de la corriente circule por el amperímetro, por lo que éste debe colocarse en serie, para que sea atravesado por dicha corriente. El amperímetro debe poseer una resistencia interna lo más pequeña posible con la finalidad de evitar una caída de tensión apreciable (al ser muy pequeña permitirá un mayor paso de electrones para su correcta medida). Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, están dotados de bobinas de hilo grueso y con pocas espiras. En algunos casos, para permitir la medida de intensidades superiores a las que podrían soportar los delicados devanados y órganos mecánicos del aparato sin dañarse, se les dota de un resistor de muy pequeño valor colocado en paralelo con el devanado, de forma que solo
pase por éste una fracción de la corriente principal. A este resistor adicional se le denomina shunt. Aunque la mayor parte de la corriente pasa por la resistencia de la derivación, la pequeña cantidad que fluye por el medidor sigue siendo proporcional a la intensidad total por lo que el galvanómetro se puede emplear para medir intensidades de varios cientos de amperios. La pinza amperimétrica es un tipo especial de amperímetro que permite obviar el inconveniente de tener que abrir el circuito en el que se quiere medir la intensidad de la corriente.
Figura 1.- Conexión de un amperímetro en un circuito
En la figura 1 se muestra la conexión de un amperímetro (A) en un circuito, por el que circula una corriente de intensidad (I), así como la conexión del resistor shunt (RS). El valor de RS se calcula en función del poder multiplicador (n) que se quiere obtener y de la resistencia interna del amperímetro (RA) según la fórmula siguiente:
Así, supongamos que se dispone de un amperímetro con 5 Ω de resistencia interna que puede medir un máximo de 1 A (lectura a fondo de escala). Si se desea que pueda medir hasta 10 A, lo que implica un poder multiplicadorde 10. La resistencia RS del shunt deberá ser:
Capacímetro
Figura 1: Capacímetro digital..
El capacímetro es un equipo de prueba electrónico utilizado para medir la capacidad o capacitancia de los condensadores. Dependiendo de la sofisticación del equipo, puede simplemente mostrar la capacidad o también puede medir una serie de parámetros tales como las fugas, la resistencia del dieléctrico o la componente inductiva.
Equipos simples[editar]
Muchos multímetros también contienen una función para medir capacidad pero no la mide sino la compara. Suelen operar mediante el proceso de la carga y descarga del condensador en virtud del aumento de la tensión resultante. La tensión varía de modo más lento cuanto mayor sea la capacitancia. Estos dispositivos pueden medir valores en el rango de nanofaradios a unos pocos cientos de microfaradios. Cuando estemos trabajando comprobando condensadores en una placa, es mejor de-soldarlos debido a que el multímetro puede dar un valor erróneo. También es común encontrar medidores LCR que permiten medir las magnitudes de inductancia, resistencia y capacitancia. Los instrumentos modernos por lo general incluyen una pantalla digital, así como modos de ensayos automatizados simples que permiten su uso en entornos de producción.
Medición de la capacidad del condensador rotativo
Cmin = 29 pF
C = 269 pF
Cmax = 520 pF
Puentes[editar] Hay instrumentos más sofisticados que permiten medidas muy precisas, tales como los basados en un circuito puente. Variando los valores de los otros tramos en el puente, a fin de que el mismo se equilibre, el valor del condensador desconocido será determinado a partir de los valores de los otros condensadores patrón utilizados. El puente por lo general también
puede medir los otros parámetros de resistencia e inductancia, de interés para los técnicos. Mediante el uso de conexiones Kelvin y otras técnicas de cuidado diseño, estos instrumentos pueden medir condensadores generalmente en un rango que abarca desde picofaradios a faradios.
Cosímetro Un cosímetro, cosenofímetro, cofímetro o fasímetro es un aparato para medir el factor de potencia (cosφ).
Tiene en su interior una bobina de tensión y una de corriente dispuestas de tal forma que si no existe defasaje, la aguja está en uno (al centro de la escala) lo que mide el cosimetro es el defase que se produce entre la corriente y la tensión producto de cargas inductivas o capacitivas. El cosímetro realiza mediciones mediante un sistema de medida de dos bobinas cruzadas . Poseen un órgano móvil constituido por dos bobinas móviles solidarias entre si y dispuestas en ángulo recto que pueden girar libremente en el campo magnético generado por un bobina fija doble. La bobina fija se ubica en serie en el circuito cuyo factor de potencia quiere determinarse, resultando por tanto, recorrida por su corriente, las bobinas móviles están dispuestas en derivación con el circuito, de modo que reciben de el toda la tensión. En serie con cada una de estas bobinas se disponen, respectivamente, una resistencia de valor elevado y una inductancia de tal forma que las corrientes que la recorren pueden considerarse respectivamente en fase y en cuadratura con la tensión del circuito.
Frecuencímetro
Contador de frecuencia o frecuencímetro
Un frecuencímetro es un instrumento que sirve para medir la frecuencia, contando el número de repeticiones de una onda en la misma posición en un intervalo de tiempo mediante el uso de un contador que acumula el número de periodos. Dado que la frecuencia se define como el número de eventos de una clase particular ocurridos en un período, su medida es generalmente sencilla. Según el sistema internacional el resultado se mide en Hertzios (Hz). El valor contado se indica en un display y el contador se pone a cero, para comenzar a acumular el siguiente periodo de muestra. La mayoría de los contadores de frecuencia funciona simplemente mediante el uso de un contador que acumula el número de eventos. Después de un periodo predeterminado (por ejemplo, 1 segundo) el valor contado es transferido a un display numérico y el contador es puesto a cero, comenzando a acumular el siguiente periodo de muestra. El periodo de muestreo se denomina base de tiempo y debe ser calibrado con mucha precisión. Índice [ocultar]
1Utilización 2Frecuencímetro digital 3Frecuencímetro de radiofrecuencia 4Precisión de la medida 5Véase también 6Bibliografía 7Enlaces externos
Utilización[editar] Para efectuar la medida de la frecuencia existente en un circuito, el frecuencímetro ha de colocarse en paralelo, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el frecuencímetro debe poseer una resistencia interna alta, para que no produzca un consumo apreciable, lo que daría lugar a una medida errónea. Por ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue la fuerza necesaria para el desplazamiento de la aguja indicadora. Si el elemento a contar está ya en forma electrónica, todo lo que se requiere es un simple interfaz con el instrumento. Cuando las señales sean más complejas, se tendrán que
acondicionar para que la lectura del frecuencímetro sea correcta. Incluyendo en su entrada algún tipo de amplificador, filtro o circuito conformador de señal. Otros tipos de eventos periódicos que no son de naturaleza puramente electrónica, necesitarán de algún tipo de transductor. Por ejemplo, un evento mecánico puede ser preparado para interrumpir un rayo de luz, y el contador hace la cuenta de los impulsos resultantes.
Frecuencímetro digital[editar] Es el tipo de frecuencímetro más usado, cuenta con unas características excepcionales en cuanto a resolución y exactitud en la lectura, mostrando con precisión en su pantalla de display LCD el resultado.
Frecuencímetro de radiofrecuencia[editar] Los frecuencímetros diseñados para radiofrecuencia (RF) actúan igual que los frecuencímetros para más bajas frecuencias, pero suelen tener un mayor rango de medida para evitar su desbordamiento. Para las frecuencias muy altas, los diseños utilizan un dispositivo capaz de bajar la frecuencia de la señal para que los digitales normales puedan operar con frecuencias más comunes. Los displays tienen esto en cuenta para indicar la lectura verdadera.
Precisión de la medida[editar] La precisión de un contador de frecuencia depende en gran medida de la estabilidad de su base de tiempo. Con fines de instrumentación se utilizan generalmente osciladores controlados por cristal de cuarzo, en los que el cristal está encerrado en una cámara de temperatura controlada, conocida como horno del cristal. Cuando no se necesita conocer la frecuencia con tan alto grado de precisión se pueden utilizar osciladores más simples. También es posible la medida de frecuencia utilizando las mismas técnicas en software en un sistema embebido - una U por ejemplo, puede ser dispuesta para medir su propia frecuencia de operación siempre y cuando tenga alguna base de tiempo con que compararse.
Galvanómetro Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Este aviso fue puesto el 26 de agosto de 2012. Puedes añadirlas o avisar al autor principal del artículo en su página de discusión pegando: {{sust:Aviso referencias|Galvanómetro}} ~~~~
Hilos de entrada de corriente a medir Resorte de retroceso
Un galvanómetro es un instrumento que se usa para detectar y medir la corriente eléctrica. Se trata de un transductor analógico electromecánico que produce una deformación de rotación en una aguja o puntero en respuesta a la corriente eléctrica que fluye a través de su bobina. Este término se ha ampliado para incluir los usos del mismo dispositivo en equipos de grabación, posicionamiento y servomecanismos. Es capaz de detectar la presencia de pequeñas corrientes en un circuito cerrado, y puede ser adaptado, mediante su calibración, para medir su magnitud. Su principio de operación (bobina móvil e imán fijo) se conoce como mecanismo de D'Arsonval, en honor al científico que lo desarrolló. Este consiste en una bobina normalmente rectangular, por la cual circula la corriente que se quiere medir, esta bobina está suspendida dentro del campo magnético asociado a un imán permanente, según su eje vertical, de forma tal que el ángulo de giro de dicha bobina es proporcional a la corriente que la atraviesa. La inmensa mayoría de los instrumentos indicadores de aguja empleados en instrumentos analógicos, se basan en el principio de operación explicado, utilizándose una bobina suspendida dentro del campo asociado a un imán permanente. Los métodos de suspensión empleados varían, lo cual determina la sensibilidad del instrumento, así cuando la suspensión se logra mediante una cinta metálica tensa, puede obtenerse deflexión a plena escala con solo 2 μA, pero el instrumento resulta extremadamente frágil, mientras que el sistema de "joyas y pivotes", semejante al empleado en relojería, permite obtener un instrumento más robusto pero menos sensible que el anterior, en los cuales, típicamente se obtiene deflexión a plena escala, con 50 μA. Índice [ocultar]
1Origen del Galvanómetro 2Componentes del galvanómetro 3Tipos de galvanómetros o 3.1Imán móvil o 3.2Cuadro móvil 4Véase también 5Referencias
Origen del Galvanómetro[editar]
Galvanómetro.
La desviación de las agujas de una brújula magnética mediante la corriente en un alambre fue descrita por primera vez por Hans Oersted en 1820. Los primeros galvanómetros fueron descritos por Johann Schweigger en la Universidad de Halle el 16 de septiembre de ese año. El físico francés, André-Marie Ampère también contribuyó a su desarrollo. Los primeros diseños aumentaron el efecto del campo magnético debido a la corriente mediante el uso de múltiples vueltas de alambre; estos instrumentos fueron denominados "multiplicadores" debido a esta característica de diseño común. El término "galvanómetro", de uso común desde 1836, se deriva del apellido del investigador italiano, Luigi Galvani, quien descubrió que la corriente eléctrica podía hacer mover la pata de una rana.
El multímetro analógico utiliza un galvanómetro.
Originalmente, los galvanómetros se basaron en el campo magnético terrestre para proporcionar la fuerza para restablecer la aguja de la brújula; estos se denominaron galvanómetros "tangentes" y debían ser orientados, según el campo magnético terrestre, antes de su uso. Más tarde, los instrumentos del tipo "estático" usaron imanes en oposición, lo que los hizo independientes del campo magnético de la Tierra y podían funcionar en cualquier orientación. La forma más sensible, el galvanómetro de Thompson o de espejo, fue inventado
por William Thomson (Lord Kelvin). En lugar de tener una aguja, utilizaba diminutos imanes unidos a un pequeño espejo ligero, suspendido por un hilo. Se basaba en la desviación de un haz de luz muy magnificado debido, a corrientes pequeñas. Alternativamente, la deflexión de los imanes suspendidos se podía observar directamente a través de un microscopio. La capacidad de medir cuantitativamente el voltaje y la corriente en los galvanómetros permitió al físico Georg Ohm formular la Ley de Ohm, que establece que el voltaje a través de un conductor es directamente proporcional a la corriente que pasa a través de él. El primer galvanómetro de imán móvil tenía la desventaja de ser afectado por cualquier imán u objeto de hierro colocado en su cercanía, y la desviación de su aguja no era proporcionalmente lineal a la corriente. En 1882, Jacques-Arsène d'Arsonval desarrolló un dispositivo con un imán estático permanente y una bobina de alambre en movimiento, suspendida por resortes en espiral. El campo magnético concentrado y la delicada suspensión hacían de éste un instrumento sensible que podía ser montado en cualquier posición. En 1888, Edward Weston desarrolló una forma comercial de este instrumento, que se convirtió en un componente estándar en los equipos eléctricos. Este diseño es casi universalmente utilizado en medidores de veleta móvil actualmente.
Componentes del galvanómetro[editar] Todos los tipos de galvanómetros contienen básicamente todos estos elementos:
1. 2. 3. 4. 5. 6. 7. 8. 9.
Imán permanente o imán temporal Bobina móvil Aguja indicadora Escala en unidades según tipos de lecturas Pivotes Cojinetes Resortes Pernos de retención Tornillo de ajuste cero
10. Mecanismo de amortiguamiento
Tipos de galvanómetros[editar]
Galvanómetro de comienzos del siglo XX.
Según el mecanismo interno, los galvanómetros pueden ser de imán móvil o de cuadro móvil.
Imán móvil[editar] En un galvanómetro de imán móvil si la aguja indicadora está asociada a un imán que se encuentra situado en el interior de una bobina por la que circula la corriente que tratamos de medir y que crea un campo magnéticoque, dependiendo del sentido de la misma, produce una atracción o repulsión del imán proporcional a la intensidad de dicha corriente.
Cuadro móvil[editar] En el galvanómetro de cuadro móvil o bobina móvil, el efecto es similar, difiriendo únicamente en que en este caso la aguja indicadora está asociada a una pequeña bobina, por la que circula la corriente a medir y que se encuentra en el seno del campo magnético producido por un imán fijo. En el diagrama de la derecha está representado un galvanómetro de cuadro móvil en el que, en rojo, se aprecia la bobina o cuadro móvil y en verde el resorte que hace que la aguja indicadora vuelva a la posición de reposo una vez que cesa el paso de corriente. En el caso de los galvanómetros térmicos, lo que se pone de manifiesto es el alargamiento producido al calentarse, por el Efecto Joule, al paso de la corriente, un hilo muy delgado arrollado a un cilindro solidario con la aguja indicadora. Lógicamente el mayor o menor alargamiento es proporcional a la intensidad de la corriente.
Megóhmetro
El término megóhmetro hace referencia a un instrumento para la medida del aislamiento eléctrico en alta tensión. El nombre de este instrumento, megóhmetro, deriva de que la medida del aislamiento de cables, transformadores, aisladores, etc se expresa en megohmios ( MΩ ). Es por tanto incorrecto el utilizar el término "Megger" como verbo en expresiones tales como: se debe realizar el megado del cable... y otras similares. En realidad estos aparatos son un tipo especial de óhmetro en el que la batería de baja tensión, de la que normalmente están dotados estos, se sustituye por un generador de alta tensión, de forma que la medida de la resistencia se efectúa con voltajes muy elevados. El megger consta de dos partes principales: un generador de corriente continúa de tipo magnetoeléctrico, movido generalmente a mano (manivela) o electrónicamente (Megger electrónico), que suministra la corriente para llevar a cabo la medición, y el mecanismo del instrumento por medio del cual se mide el valor de la resistencia que se busca. Son dos imanes permanentes rectos, colocados paralelamente entre si. El inducido del generador, junto con sus piezas polares de hierro, está montado entre dos de los polos de los imanes paralelos, y las piezas polares y el núcleo móvil del instrumento se sitúan entre los otros dos polos de los imanes. El inducido del generador se acciona a mano, regularmente, aumentándose su velocidad por medio de engranajes. Para los ensayos de resistencia de aislamiento, la tensión que más se usa es la de 500 voltios, pero con el fin de poder practicar ensayos simultáneos a alta tensión, pueden utilizarse tensiones hasta 2500 voltios, esto de acuerdo al voltaje de operación de la máquina bajo prueba. También sirve para medir eltipo de aislamiento
Normas de Seguridad[editar] 1. Aplicar todas las normativas para efectuar la desconexión del equipo a probar 2. No tocar ninguno de los cables ni el equipo probados durante la prueba 3. Descargar el equipo probado como mínimo del tiempo de prueba. (1 Minuto)
Tensión mínima de prueba: a nominal del equípo. Tensión máxima: 2 Veces la Tensión nominal mas 1000 Voltios.
Óhmetro Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Este aviso fue puesto el 27 de abril de 2016. Puedes añadirlas o avisar al autor principal del artículo en su página de discusión pegando: {{sust:Aviso referencias|Óhmetro}} ~~~~
Un óhmetro u ohmímetro es un instrumento para medir la resistencia eléctrica. Su diseño se compone de una pequeña batería para aplicar un voltaje a la resistencia de baja medida, para luego, mediante un galvanómetro, medir la corriente que circula a través de la resistencia. La escala del galvanómetro que está calibrada directamente en ohmios, ya que en aplicación de la ley de Ohm, al ser el voltaje de la batería fijo, la intensidad circulante a través del galvanómetro sólo va a depender del valor de la resistencia bajo medida, esto es, a menor resistencia mayor intensidad de corriente y viceversa. Existen también otros tipos de óhmetros más exactos y sofisticados, en los que la batería ha sido sustituida por un circuito que genera una corriente de intensidad constante I, la cual se
hace circular a través de la resistencia R bajo prueba. Luego, mediante otro circuito se mide el voltaje V en los extremos de la resistencia. De acuerdo con la ley de Ohm el valor de R vendrá dado por:
Para medidas de alta precisión la disposición indicada anteriormente no es apropiada, por cuanto que la lectura del medidor es la suma de la resistencia de los cables de medida y la de la resistencia bajo prueba. Para evitar este inconveniente, un óhmetro de precisión tiene cuatro terminales, denominados os Kelvin. Dos terminales llevan la corriente constante desde el medidor a la resistencia, mientras que los otros dos permiten la medida del voltaje directamente entre terminales de la misma, con lo que la caída de tensión en los conductores que aplican dicha corriente constante a la resistencia bajo prueba no afecta a la exactitud de la medida. El Óhmetro fue inventado por el físico alemán George Simon Alfred Ohm.
Multímetro
Polímetro analógico y polímetro digital
Polímetro digital
Midiendo con el polímetro
Un multímetro, también denominado polímetro,1 o tester, es un instrumento eléctrico portátil para medir directamente magnitudes eléctricas activas, como corrientes y potenciales (tensiones), o pasivas, como resistencias, capacidades y otras. Las medidas pueden realizarse para corriente continua o alterna y en varios márgenes de medida cada una. Los hay analógicos y posteriormente se han introducido los digitales cuya función es la misma, con alguna variante añadida. Índice [ocultar]
1Historia 2Fundamento teórico
o 2.1Introducción o 2.2Amperímetro o 2.3Voltímetro o 2.4Óhmetro 3Funciones comunes o 3.1Multímetro o polímetro analógico o 3.2Multímetros con funciones avanzadas o 3.3Como medir con el multímetro digital 4Véase también 5Referencias 6Enlaces externos
Historia[editar]
Avómetro modelo 7. Década 1960-70
Avómetro modelo 8. Década 1970-80
El multímetro tiene un antecedente, denominado AVO, que ayudó a elaborar los multímetros actuales tanto digitales como analógicos. Su invención vino de la mano de Donald Macadie, un ingeniero de la British Post Office, a quien se le ocurrió la idea de unificar tres aparatos en uno, el amperímetro, el voltímetro y el óhmetro (de ahí viene su nombre, Multímetro AVO), que facilitó el trabajo a todas las personas que estudiaban cualquier ámbito de la electrónica. Tras su creación únicamente quedaba vender el proyecto a una empresa, cuyo nombre era Automatic Coil Winder and Electrical Equipment Company (ACWEECO, fue fundada probablemente en 1923),2 saliendo a la venta el mismo año. Este multímetro se creó inicialmente para analizar circuitos en corriente continua y posteriormente se introdujeron las medidas de corriente alterna. A pesar de ello muchas de sus características se han visto inalteradas hasta su último modelo, denominado Modelo 8 y presentado en 1951. Los modelos M7 y M8 incluían además medidas de capacidad y potencia. La empresa ACWEECO cambió su nombre por el de AVO Limited, que continuó fabricando instrumentos con la marca AVO. La
compañía pasó por diferentes entidades y actualmente se llama Megger Group Limited. En las dos fotografías que acompañan al texto se pueden apreciar los modelos de AVO 7 y 8. En la actualidad los modelos analógicos han evolucionado poco respecto a los primeros modelos incluyendo además la medida de la capacidad de los condensadores y algunas características de los transistores. Los multímetros digitales, en cambio, son cada vez más sofisticados pero siempre incluyen como base el fundamento del analógico.
Fundamento teórico[editar] Introducción[editar]
Esquema 1: Polímetro
Es un aparato muy versátil, que se basa en la utilización de un instrumento de medida, un galvanómetro muy sensible que se emplea para todas las determinaciones. Para poder medir cada una de las magnitudes eléctricas, el galvanómetro se debe completar con un determinado circuito eléctrico que dependerá también de dos características del galvanómetro: la resistencia interna (Ri) y la inversa de la sensibilidad. Esta última es la intensidad que, aplicada directamente a los bornes del galvanómetro, hace que la aguja llegue al fondo de escala. Además del galvanómetro, el polímetro consta de los siguientes elementos: La escala múltiple por la que se desplaza una sola aguja, permite leer los valores de las diferentes magnitudes en los distintos márgenes de medida. Un conmutador permite cambiar la función del polímetro para que actúe como medidor en todas sus versiones y márgenes de medida. La misión del conmutador es seleccionar en cada caso el circuito interno que hay que asociar al instrumento de medida para realizar cada medición. Dos o más bornas eléctricas permiten conectar el polímetro a los circuitos o componentes exteriores cuyos valores se pretenden medir. Las bornas de suelen tener colores para facilitar que las conexiones exteriores se realicen de forma correcta. Cuando se mide en corriente continua, suele ser de color rojo la de mayor potencial ( o potencial + ) y de color negro la de menor potencial ( o potencial -). La parte izquierda de la figura (Esquema 1) es la utilizada para medir en corriente continua y se puede observar dicha polaridad. La parte derecha de la figura es la utilizada para medir en corriente alterna, cuya diferencia básica es que contiene un puente de diodos para rectificar la corriente y poder finalmente medir con el galvanómetro. El polímetro está dotado de una pila interna para poder medir las magnitudes pasivas. También posee un ajuste de cero, necesario para la medida de resistencias.
A continuación se describen los circuitos básicos de uso del polímetro, donde la raya horizontal colocada sobre algunas variables, como resistencias o la intensidad de corriente, indica que se está usando la parte izquierda de la figura (Esquema 1). Además, los razonamientos que se realizan sobre los circuitos eléctricos usados para que el polímetro funcione como amperímetro o voltímetro sirven también, de forma general, para medir en corriente alterna con la parte derecha de la figura (Esquema 1).
Amperímetro[editar] Artículo principal: Amperímetro
Esquema 2: amperímetro
Para que el polímetro trabaje como amperímetro (Esquema 2) es preciso conectar una resistencia de
en paralelo con el instrumento de medida (vínculo). El valor
depende del valor en amperios que se quiera alcanzar cuando la aguja alcance el
fondo de escala. En el polímetro aparecerán tantas resistencias conmutables como valores diferentes de fondos de escala se quieran tener. Por ejemplo, si se desean escalas de 10 miliamperios, 100 miliamperios y 1 amperio y de acuerdo con las características internas el instrumento de medida (vínculo), aparecerán tres resistencias conmutables. Si se desean medir corrientes elevadas con el polímetro como amperímetro, se suelen incorporar unas bornas de independientes. Los circuitos internos estarán construidos con cable y componentes adecuados para soportar la corriente correspondiente. Para hallar
sabemos que se cumple:
Donde I es la intensidad máxima que deseamos medir (fondo de escala), ( intensidad que circula por el galvanómetro e
)es la
la corriente que pasa por la resistencia
shunt ( ). A partir de la relación:
Que se deduce de la Ley de Ohm llegamos al valor que debe tener la resistencia shunt ( ):
De esta ecuación se obtiene el valor de el galvanómetro pasen
que hace que por
mA cuando en el circuito exterior circulan I mA.
Voltímetro[editar] Artículo principal: Voltímetro
Esquema 3: Voltímetro
Para que el polímetro trabaje como voltímetro (Esquema 3) es preciso conectar una resistencia en serie con el instrumento de medida. El valor de depende del valor en voltios que se quiera alcanzar cuando la aguja alcance el fondo de escala. En el polímetro aparecerán tantas resistencias conmutables como valores diferentes de fondos de escala se quieran tener. Por ejemplo, en el caso de requerir 10 voltios, 20 voltios, 50 voltios y 200 voltios, existirán cuatro resistencias diferentes . Para conocer el valor de la resistencia que debemos conectar utilizamos la siguiente expresión:
Que se desprende directamente de esta:
Lo que llamamos es la intensidad que hay que aplicar al polímetro para que la aguja llegue a fondo de escala.
Óhmetro[editar] Artículo principal: Óhmetro
Esquema 4: óhmetro
El óhmetro permite medir la tolerancia en Ohmios de las resistencias. Una pila interna hace circular una corriente a través de la resistencia a medir, el instrumento y una resistencia adicional de ajuste. Cuando los terminales de medida se ponen en cortocircuito circula la máxima corriente por el galvanómetro. Es el valor de corriente que se asocia a R = 0. Con la resistencia de ajuste se retoca esa corriente hasta que coincida con el fondo de escala y en la división que indica la corriente máxima se pone el valor de 0 ohmios. Cuando en los terminales se conecta la resistencia que se desea medir, se provoca una caída de tensión y la aguja se desplaza hacia valores inferiores de corriente, esto es, hacia la izquierda. La escala de resistencias crecerá, pues, de derecha a izquierda. Debido a la relación inversa entre resistencia y corriente (R=V/I), la escala del óhmetro no es lineal, lo cual provocará mayor error de medida conforme nos acerquemos a corrientes pequeñas (grandes valores de la resistencia R a medir). Montaje A continuación presentamos el circuito eléctrico que hará las veces de óhmetro (Esquema 4): Añadiremos una resistencia de protección
a la resistencia variable
.
Como elemento activo se incluye una pila que hace circular la corriente, cuyas magnitudes serán la fuerza electromotriz ε y la resistencia interna
.
Lo primero que hay que hacer es cortocircuitar la resistencia a medir R, y ajustar la resistencia variable
para que la aguja llegue al fondo de la escala.
La intensidad que circulará por el circuito en este caso será
y se puede expresar:
Si ahora conectamos R (eliminamos el cortocircuito), la nueva intensidad quedará:
y se verificará que:
Si combinamos las dos ecuaciones anteriores, obtenemos:
Funciones comunes[editar] Multímetro o polímetro analógico[editar]
Multímetro analógico
1. Las tres posiciones del mando sirven para medir intensidad en corriente continua (D.C.), de izquierda a derecha, los valores máximos que podemos medir son: 500 μA, 10 mA y 250 mA (μA se lee microamperio y corresponde a A=0,000001 A y mA se lee miliamperio y corresponde a =0,001 A). 2. Vemos 5 posiciones, para medir tensión en corriente continua (D.C.= Direct Current), correspondientes a 2.5 V, 10 V, 50 V, 250 V y 500 V, en donde V=voltios. 3. Para medir resistencia (x10 Ω y x1k Ω); Ω se lee ohmio. Esto no lo usaremos apenas, pues observando detalladamente en la escala milimetrada que está debajo del número 6 (con la que se mide la resistencia), verás que no es lineal, es decir, no hay
la misma distancia entre el 2 y el 3 que entre el 4 y el 5; además, los valores decrecen hacia la derecha y la escala en lugar de empezar en 0, empieza en (un valor de resistencia igual a significa que el circuito está abierto). A veces usamos estas posiciones para ver si un cable está roto y no conduce la corriente. 4. Como en el apartado 2, pero en este caso para medir corriente alterna (A.C.:=Alternating Current). 5. Sirve para comprobar el estado de carga de pilas de 1.5 V y 9 V. 6. Escala para medir resistencia. 1. Escalas para el resto de mediciones. Desde abajo hacia arriba vemos una de 0 a 10, otra de 0 a 50 y una última de 0 a 250.
Multímetros con funciones avanzadas[editar]
Multímetro analógico
Más raramente se encuentran también multímetros que pueden realizar funciones más avanzadas como:
Generar y detectar la frecuencia intermedia de un aparato, así como un circuito amplificador con altavoz para ayudar en la sintonía de circuitos de estos aparatos. Permiten el seguimiento de la señal a través de todas las etapas del receptor bajo prueba. Realizar la función de osciloscopio por encima del millón de muestras por segundo en velocidad de barrido, y muy alta resolución. Sincronizarse con otros instrumentos de medida, incluso con otros multímetros, para hacer medidas de potencia puntual (Potencia = Voltaje * Intensidad). Utilización como aparato telefónico, para poder conectarse a una línea telefónica bajo prueba, mientras se efectúan medidas por la misma o por otra adyacente. Comprobación de circuitos de electrónica del automóvil. Grabación de ráfagas de alto o bajo voltaje. Un polímetro analógico genérico o estándar suele tener los siguientes componentes: Conmutador alterna-continua (AC/DC): permite seleccionar una u otra opción dependiendo de la tensión (continua o alterna). Interruptor rotativo: permite seleccionar funciones y escalas. Girando este componente se consigue seleccionar la magnitud (tensión, intensidad, etc.) y el valor de escala. Ranuras de inserción de condensadores: es donde se debe insertar el condensador cuya capacidad se va a medir. Orificio para la Hfe de los transistores: permite insertar el transistor cuya ganancia se va a medir. Entradas: en ellas se conectan las puntas de medida.
Habitualmente, los polímetros analógicos poseen cuatro bornes (aunque también existen de dos), uno que es el común, otro para medir tensiones y resistencias, otro para medir intensidades y otro para medir intensidades no mayores de 20 amperios.
Como medir con el multímetro digital[editar]
Midiendo tensiones Para medir una tensión, colocaremos las bornas en las clavijas, y no tendremos más que colocar ambas puntas entre los puntos de lectura que queramos medir. Si lo que queremos es medir voltaje absoluto, colocaremos la borna negra en cualquier masa (un cable negro de molex o el chasis del ordenador) y la otra borna en el punto a medir. Si lo que queremos es medir diferencias de voltaje entre dos puntos, no tendremos más que colocar una borna en cada lugar. Midiendo resistencias El procedimiento para medir una resistencia es bastante similar al de medir tensiones. Basta con colocar la ruleta en la posición de ohmios y en la escala apropiada al tamaño de la resistencia que vamos a medir. Si no sabemos cuantos ohmios tiene la resistencia a medir, empezaremos con colocar la ruleta en la escala más grande, e iremos reduciendo la escala hasta que encontremos la que más precisión nos da sin salirnos de rango. Midiendo intensidades El proceso para medir intensidades es algo más complicado, puesto que en lugar de medirse en paralelo, se mide en serie con el circuito en cuestión. Por esto, para medir intensidades tendremos que abrir el circuito, es decir, desconectar algún cable para intercalar el tester en medio, con el propósito de que la intensidad circule por dentro del tester. Precisamente por esto, hemos comentado antes que un tester con las bornas puestas para medir intensidades tiene resistencia interna casi nula, para no provocar cambios en el circuito que queramos medir. Para medir una intensidad, abriremos el circuito en cualquiera de sus puntos, y configuraremos el tester adecuadamente (borna roja en clavija de amperios de más capacidad, 10 A en el caso del tester del ejemplo, borna negra en clavija común COM). Una vez tengamos el circuito abierto y el tester bien configurado, procederemos a cerrar el circuito usando para ello el tester, es decir, colocaremos cada borna del tester en cada uno de los dos extremos del circuito abierto que tenemos. Con ello se cerrará el circuito y la intensidad circulará por el interior del multímetro para ser leída