FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO ACADÉMICO DE HIDRÁULICA
Docente: Alumno :
Ing. Nuñez Smith, Jorge Luis Nuñez Smith, Jorge Luis
Peña Guerra Jhon
20100043H
2013 - I
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO ACADÉMICO DE HIDRÁULICA
FLUIDOS COMPRESIBLES
Todos los fluidos son compresibles, incluyendo los líquidos. Cuando estos cambios de volumen son demasiado grandes se opta por considerar el flujo como compresible (que muestran una variación significativa de la densidad como resultado de fluir), esto sucede cuando la velocidad del flujo es cercano a la velocidad del sonido. Estos cambios suelen suceder principalmente en los gases ya que para alcanzar estas velocidades de flujo el líquidos se precisa de presiones del orden de 1000 atmósferas, en cambio un gas sólo precisa una relación de presiones de 2:1 para alcanzar velocidades sónicas. La compresibilidad de un flujo es básicamente una medida en el cambio de la densidad. Los gases son en general muy compresibles, en cambio, la mayoría de los líquidos tienen una compresibilidad muy baja. Por ejemplo, una presión de 500 kPa provoca un cambio de densidad en el agua a temperatura ambiente de solamente 0.024%, en cambio esta misma presión aplicada al aire provoca un cambio de densidad de 250%. Por esto normalmente al estudio de los flujos compresibles se le conoce como dinámica de gases, siendo esta una nueva rama de la mecánica de fluidos, la cual describe estos flujos. En un flujo usualmente hay cambios en la presión, asociados con cambios en la velocidad. En general, estos cambios de presión inducirán a cambios de densidad, los cuales influyen en el flujo, si estos cambios son importantes los cambios de temperatura presentados son apreciables. Aunque los cambios de densidad en un flujo pueden ser muy importantes hay una gran cantidad de situaciones de importancia práctica en los que estos cambios son despreciables. El flujo de un fluido compresible se rige por la primera ley de la termodinámica en los balances de energía y con la segunda ley de la termodinámica, que relaciona la transferencia de calor y la irreversibilidad con la entropía. El flujo es afectado por efectos cinéticos y dinámicos, descritos por las leyes de Newton, en un marco de referencia inercial. Además, el flujo cumple con los requerimientos de conservación de masa. Los flujos compresibles pueden ser clasificados de varias maneras, la más común usa el número de Mach (M) como parámetro para clasificarlo.
Donde V es la velocidad del flujo y a es la velocidad del sonido en el fluido, cuyo valor es de 346 m/s en el aire a temperatura ambiente al nivel del mar.
Prácticamente incompresible: M < 0.3 en cualquier parte del flujo. Las variaciones de densidad debidas al cambio de presión pueden ser despreciadas. El gas es compresible pero la densidad puede ser considerada constante.
Flujo subsónico: M > 0.3 en alguna parte del flujo pero no excede 1 en ninguna parte. No hay ondas de choque en el flujo.
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO ACADÉMICO DE HIDRÁULICA
Flujo transónico: 0.8 ≤ M ≤ 1.2. Hay ondas de choque que conducen a un rápido incremento de la fricción y éstas separan regiones subsónicas de hipersónicas dentro del flujo. Debido a que normalmente no se pueden distinguir las partes viscosas y no viscosas este flujo es difícil de analizar.
Flujo supersónico: 1.2 < M ≤ 5. Normalmente hay ondas de choque pero ya no hay regiones subsónicas. El análisis de este flujo es menos complicado.
Flujo hipersónico: M > 5. Los flujos a velocidades muy grandes causan un calentamiento considerablemente grande en las capas cercanas a la frontera del flujo, causando disociación de moléculas y otros efectos químicos.
FLUIDO INCOMPRESIBLE La incompresibilidad es una aproximación y se dice que el flujo es incompresible si la densidad permanece aproximadamente constante a lo largo de todo el flujo. Por lo tanto, el volumen de todas las porciones del fluido permanece inalterado sobre el curso de su movimiento cuando el flujo o el fluido es incompresible. En esencia, las densidades de los líquidos son constantes y así el flujo de ellos es típicamente incompresible. Un fluido incompresible es cualquier fluido cuya densidad siempre permanece constante con el tiempo, y tiene la capacidad de oponerse a la compresión del mismo bajo cualquier condición. Esto quiere decir que ni la masa ni el volumen del fluido puede cambiar. El agua es un fluido casi incompresible, es decir, la cantidad de volumen y la cantidad de masa permanecerán prácticamente iguales, aún bajo presión. De hecho, todos los fluidos son compresibles, algunos más que otros. La compresión de un fluido mide el cambio en el volumen de una cierta cantidad de líquido cuando se somete a una presión exterior. Por esta razón, para simplificar las ecuaciones de la mecánica de fluidos, se considera que los líquidos son incompresibles. En términos matemáticos, esto significa que la densidad de tal fluido se supone constante
La ecuación de la conservación de la masa toma entonces una forma particularmente sencilla bajo la forma integral en una superficie cerrada :
donde J representa el flujo de masa, lo que indica la igualdad de masa de fluido que entra y sale bajo una área determinada, o bien bajo forma local
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO ACADÉMICO DE HIDRÁULICA
cuya condición equivalente es que la divergencia de la velocidad de un fluido se anule. Se debe prestar atención a todas las propiedades del fluido (aire, agua) para definir las condiciones de flujo. Esto se debe a que todas las propiedades están conectadas entre sí. Si la presión o la temperatura de un fluido cambia, su densidad generalmente también cambia (a menos que se trate de un fluido incompresible). La densidad del aire en un día caluroso es más baja que en un día frío. A grandes alturas, donde la presión es más baja, la densidad del aire es también más baja.
COMPRESIBILIDAD DE LOS LÍQUIDOS En general un líquido se puede considerar como incompresible, pero en situaciones en que se tengan cambios de presión bruscos o muy grandes, su compresibilidad es importante. La compresibilidad de los líquidos también es importante cuando se tienen cambios de temperatura. Considérese una partícula de fluido de volumen V. Si la partícula está sujeta a un cambio de presión dP, se produce un cambio de volumen (dV) y el módulo de elasticidad (o compresibilidad) volumétrica es
El signo negativo es necesario, ya que un incremento en la presión provoca una disminución en el volumen. Como la masa de la partícula del fluido está fija, K también se puede expresar en función del volumen específico o de la densidad:
donde el subíndice T indica que la compresión del líquido se realiza a temperatura constante (compresión isotérmica). El módulo de compresibilidad también se puede expresar de manera aproximada en términos de cambios finitos como
Nótese que si ΔV/V o Δρ/ρ son adimensionales, K debe tener dimensiones de presión (Pa o psi). Asimismo, el módulo de compresibilidad representa el cambio en la presión correspondiente a un cambio relativo en el volumen o la densidad del fluido, mientras la
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO ACADÉMICO DE HIDRÁULICA
temperatura permanezca constante. Entonces se llega a la conclusión de que el módulo de compresibilidad de una sustancia verdaderamente incompresible (V = constante) es infinito. Un valor grande de K indica que se necesita un cambio también grande en la presión para causar un pequeño cambio relativo en el volumen y, de este modo, un fluido con un K grande en esencia es incompresible. Esto es típico para los líquidos y explica por qué éstos suelen considerarse como incompresibles. Por ejemplo, la presión del agua en condiciones atmosféricas normales debe elevarse hasta 210 atm para comprimirla en 1 por ciento, lo que corresponde a un valor del módulo de compresibilidad de K = 21 000 atm. El inverso del módulo de compresibilidad es el coeficiente de compresibilidad β,
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO ACADÉMICO DE HIDRÁULICA
BIBLIOGRAFIA
Fundamentos de Mecánica de Fluidos (2ª Edición). P. Gerhart, R. Gross y J. Hochstein. Adison-Wesley Iberoamericana 1995.
Çengel, Y.A., y Cimbala, J.M., Mecánica de Fluidos, fundamentos y aplicaciones, 1ª ed., McGraw-Hill Interamericana, 2006.